A detection method of artificial area from high resolution remote sensing images based on multi scale and multi feature fusion
نویسندگان
چکیده
In order to solve the problem of automatic detection of artificial objects in high resolution remote sensing images, a method for detection of artificial areas in high resolution remote sensing images based on multi-scale and multi feature fusion is proposed. Firstly, the geometric features such as corner, straight line and right angle are extracted from the original resolution, and the pseudo corner points, pseudo linear features and pseudo orthogonal angles are filtered out by the self-constraint and mutual restraint between them. Then the radiation intensity map of the image with high geometric characteristics is obtained by the linear inverse distance weighted method. Secondly, the original image is reduced to multiple scales and the visual saliency image of each scale is obtained by adaptive weighting of the orthogonal saliency, the local brightness and contrast which are calculated at the corresponding scale. Then the final visual saliency image is obtained by fusing all scales’ visual saliency images. Thirdly, the visual saliency images of artificial areas based on multi scales and multi features are obtained by fusing the geometric feature energy intensity map and visual saliency image obtained in previous decision level. Finally, the artificial areas can be segmented based on the method called OTSU. Experiments show that the method in this paper not only can detect large artificial areas such as urban city, residential district, but also detect the single family house in the countryside correctly. The detection rate of artificial areas reached 92%. * Corresponding author
منابع مشابه
Fusion of Thermal Infrared and Visible Images Based on Multi-scale Transform and Sparse Representation
Due to the differences between the visible and thermal infrared images, combination of these two types of images is essential for better understanding the characteristics of targets and the environment. Thermal infrared images have most importance to distinguish targets from the background based on the radiation differences, which work well in all-weather and day/night conditions also in land s...
متن کاملModeling the potential of Sand and Dust Storm sources formation using time series of remote sensing data, fuzzy logic and artificial neural network (A Case study of Euphrates basin)
Due to the differences between the visible and thermal infrared images, the combination of these two types of images leads to better understanding of the characteristics of targets and the environment. Thermal infrared images are really in distinguishing targets from the background based on the radiation differences and land surface temperature (LST) calculation. However, their spatial resolu...
متن کاملObject Level Strategy for Spectral Quality Assessment of High Resolution Pan-sharpen Images
Panchromatic and multi-spectral images produced by the remote sensing satellites are fused together to provide a multi-spectral image with a high spatial resolution at the same time. The spectral quality of the fused images is very important because the quality of a large number of remote sensing products depends on it. Due to the importance of the spectral quality of the fused images, its eval...
متن کاملvegetation change detection using multi-temporal remotly sensed data during recent three decades by artificial intelligence technique (Case study: protected area of Bashgol)
Quantitative and qualitative information of vegetation and its changes in duration of time as a basic foundation of determination of habitat quality, priority of protected area and also determination of price of ecosystem services in order to optimum management of natural resources and sustainable development is a very important technical point. In other hand, researchers are interested in rem...
متن کاملAutomatic Interpretation of UltraCam Imagery by Combination of Support Vector Machine and Knowledge-based Systems
With the development of digital sensors, an increasing number of high-resolution images are available. Interpretation of these images is not possible manually, which necessitates seeking for practical, fast and automatic solutions to solve the environmental and location-based management problems. The land cover classification using high-resolution imagery is a difficult process because of the c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017